END SEMESTER EXAMINATION – 2021

Semester: 1st (New)

Subject Code: Sc-102

MATHEMATICS - I

Full Marks: 70

Time - Three Hours

The figures in the margin indicate full marks for the questions.

Instruction:

All questions of PART-A and PART-B are compulsory.

POLYTECHNIC DIPLOMA

Marks - 25

- 1. Choose the correct answer of the following questions: $1 \times 10 = 10$
 - (i) The value of i¹⁰⁹ is.
 - (a) -i

(b) i

(c) -1

(d) 1

- (ii) The modulus of a-ib is
 - (a) a+ib

- (b) $\sqrt{a-ib}$
- (c) $\sqrt{a^2+b^2}$ (d) $\sqrt{a^2-b^2}$
- (iii) If a polynomial p(x) has no factor common to the factors of x³-1, then the partial fraction of the proper fraction $\frac{p(x)}{x^3-1}$ be of the form

(a)
$$\frac{Ax^2 + Bx + C}{x^3 - 1}$$

(b)
$$\frac{C}{x-1} + \frac{A+Bx}{x^2+x+1}$$

(c)
$$\frac{A}{x-1} + \frac{Bx^2 + Cx + D}{x^2 + x + 1}$$

(d)
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3}$$

- (iv) If $^{n+1}C_3 = 2 \times ^nC_2$, then the value of n is
- (a) 3

(b) 4

(c) 5

(d) 6 '

- (v) How many arrangements can be made out of the letters of the word 'POLYTECHNIC'?
 - (a) 11!

- (b) $\frac{11!}{2!}$
- (c) 11!-2!
- (d) 11p2
- (vi) Number of terms in $(2-x^2)^{15}$ is
 - (a) 16

(b) 15

(c) 14

(d) 30

(vii)Coefficient of middle term in expansion of

$$\left(x-\frac{x^3}{5}\right)^8$$
 is

(a) $\frac{14}{625}$

(b) $\frac{70}{625}$

(c) $\frac{14}{125}$

(d) $\frac{70}{125}$

(viii) The value of $\log_{81} 27$ is

(a) $\frac{1}{4}$

(b) $\frac{1}{2}$

(c) $\frac{5}{4}$

(d) $\frac{3}{4}$

3/Sc-102/Maths-I(N)

(3)

[Turn over

(a) p×m

(b) $p \times n$

- (c) n×p
- (d) m×p
- (x) If A is a skew symmetric matrix of order 3×3, then the sum of the diagonal elements of A is
- x

7

(a) 0

(b) 6

(c) 9

- (d) 3
- 2. Choose the correct statement:

- $1 \times 5 = 5$
- (i) (a) $\sin(A+B)\sin(A-B) = \sin^2 A \sin^2 B$
 - (b) $\sin(A+B)\sin(A-B) = \cos^2 A \sin^2 B$
 - (c) $\sin(A+B)\sin(A-B) = \sin^2 A \cos^2 B$
- (ii) (a) $\cos 2A = \frac{1 \tan^2 A}{1 + \tan^2 A}$

(b)
$$\sin 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

(c)
$$\tan 2A = \frac{2 \tan A}{1 + \tan^2 A}$$

(iii) (a)
$$\sin 3\theta = 4\sin^3 \theta - 3\sin \theta$$

$$(b) \sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

(c)
$$\sin 3\theta = 3\sin^3 \theta - 4\sin \theta$$

(iv) In any ΔABC

(a)
$$a^2 = b^2 + c^2 - 2bc \cos B$$

(b)
$$a^2 = b^2 + c^2 + 2bc \cos A$$

(c)
$$a = b \cos C + c \cos B$$

(v) (a)
$$\sin^{-1}(x) + \sin^{-1}(-x) = \frac{\pi}{2}, x \in [-1, 1]$$

(b)
$$\cos^{-1}(x) + \cos^{-1}(-x) = \pi, x \in [-1,1]$$

(c)
$$\tan^{-1}(x) + \cot^{-1}(-x) = \frac{\pi}{2}, x \in \mathbb{R}$$

3	T7:11	•			·	•	
1	Fill	117	the	h	an	40	
-	1 111	111	uic		ан	V 2	

 $1 \times 5 = 5$

- (i) The volume of a sphere of radius 6 unit is
 - (ii) The base radius of a cone is 7 units. If the height of the cone is 24 units, its lateral surface is _____. U units.
- (iii) In the Simpson's Rule: Area = $\frac{S}{3}$ [A+2D+4E], the letter 'S' stands for _____.
 - (iv) If m₁ and m₂ be the slopes of two perpendicular lines, then the relation between m₁ and m₂ is _____. point lie
 - (v) The equation of a straight line passing through (0,-1) and parallel to x-axis is
- 4. Write true or false:

 $1 \times 5 = 5$

- √ (i) If two columns of a determinant are same (identical), then the value of the determinant will be zero.
- \uparrow (ii) The value of $\sin(-1230^\circ)$ is $\frac{1}{2}$.

- (iii) The principal value of $\cos^{-1}(\cos\frac{5\pi}{4})$ is $\frac{\pi}{4}$.
 - (iv) In a triangle ABC, if the sides are a=7,b=5 and c=8, then the value of A will be 60°. F
 - (v) If a base of field 55m and number of ordinates are 11, then the breadth of each strip is equal to 5m.

PART – B

Marks - 45

- 5. Answer any *five* of the following questions: $2 \times 5 = 10$
 - (i) If x=1-i, then prove that $x^2-2x+2=0$.
 - (ii) Find the argument of $2+2\sqrt{-3}$.
 - (iii) In how many different ways can the letters of the word PANDEMIC be arranged without changing the order of the vowels in the word?
 - (iv) Write the general term in the expansion of $\left(9x \frac{1}{3\sqrt{x}}\right)^{18}$ and find its 13th term.

(v) Prove that

$$\log 2 + 16 \log \frac{16}{15} + 12 \log \frac{25}{24} + 7 \log \frac{81}{80} = 1$$
.

(vi) Insert three G.M.s between 1 and $\frac{1}{16}$.

(vii)If
$$A = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$$
 and $B^T = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, then find $(A+2B)^T$.

6. Resolve into partial fractions (any one):

$$3 \times 1 = 3$$

(i)
$$\frac{x}{(x+1)(x-2)^2}$$

(ii)
$$\frac{2x-3}{x^2+6x+8}$$
.

- 7. Answer any two of the following questions:

 3×2 6
 - (i) If 3rd and 7th terms of an Arithmetic Progression are 18 and 30 respectively, then find the progression.
 - (ii) If a,b,c in A.P. and x,y,z are in G.P., then prove that $x^{b-c}y^{c-a}z^{a-b}=1$.

(iii) By using properties of determinant find the value of

$$\begin{vmatrix} 1+x & y & z \\ x & 1+y & z \\ x & y & 1+z \end{vmatrix}.$$

8. Prove any three of the following: $2\times 3=6$

(i)
$$\frac{\cos 5^0 + \sin 5^0}{\cos 5^0 - \sin 5^0} = \tan 50^0$$

(ii)
$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sec\theta + \tan\theta$$

(iii)
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$$
.

(iv) In any triangle ABC,
$$\frac{a+b}{c} = \frac{\cos\left(\frac{A-B}{2}\right)}{\sin\frac{C}{2}}$$
.

- 9. Answer any two of the following questions: $3\times2=6$
 - (i) If $A+B+C=\frac{\pi}{2}$, then prove that $\tan A \tan B + \tan B \tan C + \tan C \tan A=1$.

(ii) Solve:
$$2\cos^2 x + 3\cos x - 2 = 0$$
, $0 \le x \le 2\pi$.

(iii) Show that
$$\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$$
.

10. Answer any two of the following questions: $3\times 2=6$

 (i) An irregular plot has the following offsets measured from one end at equal distance.

3	X	0	12	24	36	48	60	72	84	96	108	120
	d	53	52	47	49	53	63	58	61	52	49	48

Find the area of the plot.

- (ii) Find the whole surface area of a right prism whose height is 75 cm and whose base is a regular octagon of side 12cm.
- (iii) A regular pyramid has a base area of 56 cm² and a volume of 224 cm³. What is the height of the pyramid?
- 11. Answer the following questions: 2+3+3=8
 - (i) If the three points (3,0), (a, -2) and (8, 2) are collinear, then find the value of a.

- (ii) Find the equation of a straight line passing through (-2, 4) and perpendicular to the line 4x+5y+2=0.
- (iii) Find the equations of two lines parallel to 5x-12y+26=0 at a distance of 4 units from it.

